The problem of identifying a probabilistic context free grammar has two aspects: the first is determining the grammar's topology (the rules of the grammar) and the second is estimating probabilistic weights for each rule. Given the hardness results for learning context-free grammars in general, and probabilistic grammars in particular, most of the literature has concentrated on the second problem. In this work we address the first problem. We restrict attention to structurally unambiguous weighted context-free grammars (SUWCFG) and provide a query learning algorithm for structurally unambiguous probabilistic context-free grammars (SUPCFG). We show that SUWCFG can be represented using co-linear multiplicity tree automata (CMTA), and provide a polynomial learning algorithm that learns CMTAs. We show that the learned CMTA can be converted into a probabilistic grammar, thus providing a complete algorithm for learning a structurally unambiguous probabilistic context free grammar (both the grammar topology and the probabilistic weights) using structured membership queries and structured equivalence queries. We demonstrate the usefulness of our algorithm in learning PCFGs over genomic data.
翻译:确定概率背景自由语法的问题有两个方面:第一个方面是确定语法的地形学(语法规则),第二个方面是估计每种规则的概率比重。鉴于一般学习无上下文语法的硬性结果,特别是概率语法的硬性结果,大多数文献都集中在第二个问题上。在这个工作中,我们处理第一个问题。我们把注意力限制在结构上明确的加权无上下文语法(SUWCFG)上,并为结构上明确的无上下文语法(SUUCWCFG)提供一个查询算法。我们表明,SWCFG可以使用共线多层树自动成像(CMTA)来代表它,并提供一种多线性学习算法,学习CMTAs。我们表明,学到的CMTA可以转换成一种概率学图,从而提供一种完整的算法,用于学习结构上明确的无上明确的文法的文法背景自由语法(从表表表上看,用我们的数据表表表表学和结构上的GA级数据等中,我们用结构上的数据等值查询。