We study necessary conditions for stability of a Numerov-type compact higher-order finite-difference scheme for the 1D homogeneous wave equation in the case of non-uniform spatial meshes. We first show that the uniform in time stability cannot be valid in any spatial norm provided that the complex eigenvalues appear in the associated mesh eigenvalue problem. Moreover, we prove that then the solution norm grows exponentially in time making the scheme strongly non-dissipative and therefore impractical. Numerical results confirm this conclusion. In addition, for some sequences of refining spatial meshes, an excessively strong condition between steps in time and space is necessary (even for the non-uniform in time stability) which is familiar for explicit schemes in the parabolic case.
翻译:我们研究在非统一空间模件的情况下,为1D同质波等式的Numerov型紧凑式高阶定置差异方案的稳定所需的必要条件;我们首先表明,任何空间规范中的时间稳定性均匀不能有效,只要复杂的电子值出现在相关的网状电子值问题中;此外,我们证明,随后的解决方案规范随着时间的指数增长而成倍增长,使得该办法非常不具有差异性,因而不切实际;数字结果证实了这一结论;此外,对于某些精炼空间模件的顺序而言,时间和空间步骤之间必须有一个过于强烈的条件(即使是时间稳定性不统一的情况也是如此),对于抛物法案中的明确方案来说,这种条件是熟悉的。