There is a rich literature on Bayesian nonparametric methods for unknown densities. The most popular approach relies on Dirichlet process mixture models. These models characterize the unknown density as a kernel convolution with an unknown almost surely discrete mixing measure, which is given a Dirichlet process prior. Such models are very flexible and have good performance in many settings, but posterior computation typically relies on Markov chain Monte Carlo algorithms that can be complex and inefficient. As a simple alternative, we propose a class of nearest neighbor-Dirichlet processes. The approach starts by grouping the data into neighborhoods based on standard algorithms. Within each neighborhood, the density is characterized via a Bayesian parametric model, such as a Gaussian with unknown parameters. Assigning a Dirichlet prior to the weights on these local kernels, we obtain a simple pseudo-posterior for the weights and kernel parameters. A simple and embarrassingly parallel Monte Carlo algorithm is proposed to sample from the resulting pseudo-posterior for the unknown density. Desirable asymptotic properties are shown, and the methods are evaluated in simulation studies and applied to a motivating data set in the context of classification.


翻译:Bayesian非参数性方法中有大量关于未知密度的文献。 最受欢迎的方法依赖于 Drichlet 进程混合模型。 这些模型将未知密度定性为内核变异, 具有未知的、 几乎肯定的离散混合测量, 之前给它一个 Dirichlet 进程。 这些模型非常灵活, 在许多场合都有良好的性能, 但后方计算通常依赖于Markov 链条 Monte Carlo 算法, 这些算法可能是复杂和低效的。 作为简单的替代方案, 我们建议了一组最近的邻居- Drichlet 进程。 这种方法首先根据标准算法将数据分组到附近。 在每一个街区, 该密度通过拜地的参数模型来定性, 例如带未知参数的Gaussian 。 在对本地内核加权之前指定一个 Dirichlet, 我们通常会获得一个简单的伪称称重量和内核参数的参数。 一个简单和尴尬的平行的 Monte Carlo 算法, 被推荐为从由此产生的假密度的伪基点样本, 。 在模拟研究中, 展示了数据分类时, 并应用了方法 。

0
下载
关闭预览

相关内容

【WSDM2021】保存节点相似性的图卷积网络
专知会员服务
40+阅读 · 2020年11月22日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【KDD2020】最小方差采样用于图神经网络的快速训练
专知会员服务
27+阅读 · 2020年7月13日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月30日
Arxiv
4+阅读 · 2018年1月15日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
【WSDM2021】保存节点相似性的图卷积网络
专知会员服务
40+阅读 · 2020年11月22日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【KDD2020】最小方差采样用于图神经网络的快速训练
专知会员服务
27+阅读 · 2020年7月13日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员