It is presented here a machine learning-based (ML) natural language processing (NLP) approach capable to automatically recognize and extract categorical and numerical parameters from a corpus of articles. The approach (named a.RIX) operates with a concomitant/interchangeable use of ML models such as neuron networks (NNs), latent semantic analysis (LSA) and naive-Bayes classifiers (NBC), and a pattern recognition model using regular expression (REGEX). To demonstrate the efficiency of the a.RIX engine, it was processed a corpus of 7,873 scientific articles dealing with natural products (NPs). The engine automatically extracts categorical and numerical parameters such as (i) the plant species from which active molecules are extracted, (ii) the microorganisms species for which active molecules can act against, and (iii) the values of minimum inhibitory concentration (MIC) against these microorganisms. The parameters are extracted without part-of-speech tagging (POS) and named entity recognition (NER) approaches (i.e. without the need of text annotation), and the models training is performed with unsupervised approaches. In this way, a.RIX can be essentially used on articles from any scientific field. Finally, it has a potential to make obsolete the currently used articles reviewing process in some areas, specially those in which texts structure, text semantics and latent knowledge is captured by machine learning models.


翻译:此处介绍了一种基于机械学习(ML)自然语言处理(NLP)方法,它能够自动识别和从一系列文章中提取绝对和数字参数,该方法(称为a.RIX)运行时同时/互换使用ML模型,如神经网络(NNS)、隐性语义分析(LSA)和天真的Bayes分类(NBC),以及使用常规表达法(REGEX)的一种模式识别模型。为显示a.RIX引擎的效率,它处理的是涉及自然产品(NPs)的7,873件科学文章。发动机自动提取绝对和数字参数,如(一)提取活分子的植物物种,(二)活性分子可与之对抗的微生物物种,(三)对这些微生物的最低抑制浓度值(MIC),以及使用常规表达法(REGEX)的模型。这些参数在没有部分语言标记(POS)和名称实体识别法(NER)方法(即不需要文字注释)的情况下,这些模型培训工作是用不透视的模型方法进行的,而模型培训基本上是用不透视前期的科学方法。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
97+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年9月28日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员