Next Point-of-Interest (POI) recommendation is a critical task in location-based services that aim to provide personalized suggestions for the user's next destination. Previous works on POI recommendation have laid focused on modeling the user's spatial preference. However, existing works that leverage spatial information are only based on the aggregation of users' previous visited positions, which discourages the model from recommending POIs in novel areas. This trait of position-based methods will harm the model's performance in many situations. Additionally, incorporating sequential information into the user's spatial preference remains a challenge. In this paper, we propose Diff-POI: a Diffusion-based model that samples the user's spatial preference for the next POI recommendation. Inspired by the wide application of diffusion algorithm in sampling from distributions, Diff-POI encodes the user's visiting sequence and spatial character with two tailor-designed graph encoding modules, followed by a diffusion-based sampling strategy to explore the user's spatial visiting trends. We leverage the diffusion process and its reversed form to sample from the posterior distribution and optimized the corresponding score function. We design a joint training and inference framework to optimize and evaluate the proposed Diff-POI. Extensive experiments on four real-world POI recommendation datasets demonstrate the superiority of our Diff-POI over state-of-the-art baseline methods. Further ablation and parameter studies on Diff-POI reveal the functionality and effectiveness of the proposed diffusion-based sampling strategy for addressing the limitations of existing methods.


翻译:推荐下一个兴趣点(POI)是位置服务中的一个关键任务,旨在为用户的下一个目的地提供个性化建议。以前关于POI推荐的研究已经集中在建模用户的空间偏好上。然而,利用空间信息的现有方法仅基于用户先前访问位置的聚合,这使模型不鼓励在新领域推荐POI。这些以位置为基础的方法的这个特征将在许多情况下损害模型的性能。此外,将时序信息纳入用户的空间偏好仍然是一个挑战。在本文中,我们提出了Diff-POI:一种基于扩散的模型,用于对下一个POI推荐进行采样。受扩散算法在从分布中采样的广泛应用的启发,Diff-POI使用两个定制的图形编码模块对用户的访问序列和空间特征进行编码,然后使用基于扩散的采样策略来探索用户的空间参观趋势。我们利用扩散过程及其反向形式从后验分布中采样,并优化相应的分数函数。我们设计了一个联合训练和推理框架来优化和评估所提出的Diff-POI。对四个真实世界的POI推荐数据集进行的广泛实验表明,Diff-POI优于最先进的基准方法。进一步的消融和参数研究表明,所提出的基于扩散的采样策略应对现有方法的局限性是有效的。

0
下载
关闭预览

相关内容

【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
近期必读的五篇KDD 2020【推荐系统 (RS) 】相关论文
专知会员服务
65+阅读 · 2020年8月11日
ICLR2023推荐系统投稿论文集锦
图与推荐
0+阅读 · 2022年11月15日
CIKM2022推荐系统论文集锦
机器学习与推荐算法
1+阅读 · 2022年9月22日
最新10篇对比学习推荐前沿工作
机器学习与推荐算法
2+阅读 · 2022年9月14日
SIGIR2022 | 推荐算法之对比学习篇
机器学习与推荐算法
7+阅读 · 2022年7月21日
IJCAI2022推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2022年5月20日
KDD2020推荐系统论文聚焦
机器学习与推荐算法
15+阅读 · 2020年6月28日
推荐中的序列化建模:Session-based neural recommendation
机器学习研究会
18+阅读 · 2017年11月5日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
14+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
15+阅读 · 2021年6月27日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关VIP内容
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
近期必读的五篇KDD 2020【推荐系统 (RS) 】相关论文
专知会员服务
65+阅读 · 2020年8月11日
相关资讯
ICLR2023推荐系统投稿论文集锦
图与推荐
0+阅读 · 2022年11月15日
CIKM2022推荐系统论文集锦
机器学习与推荐算法
1+阅读 · 2022年9月22日
最新10篇对比学习推荐前沿工作
机器学习与推荐算法
2+阅读 · 2022年9月14日
SIGIR2022 | 推荐算法之对比学习篇
机器学习与推荐算法
7+阅读 · 2022年7月21日
IJCAI2022推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2022年5月20日
KDD2020推荐系统论文聚焦
机器学习与推荐算法
15+阅读 · 2020年6月28日
推荐中的序列化建模:Session-based neural recommendation
机器学习研究会
18+阅读 · 2017年11月5日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
相关基金
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
14+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员