This paper provides an algorithmic framework for obtaining fast distributed algorithms for a highly-dynamic setting, in which *arbitrarily many* edge changes may occur in each round. Our algorithm significantly improves upon prior work in its combination of (1) having an $O(1)$ amortized time complexity, (2) using only $O(\log{n})$-bit messages, (3) not posing any restrictions on the dynamic behavior of the environment, (4) being deterministic, (5) having strong guarantees for intermediate solutions, and (6) being applicable for a wide family of tasks. The tasks for which we deduce such an algorithm are maximal matching, $(degree+1)$-coloring, 2-approximation for minimum weight vertex cover, and maximal independent set (which is the most subtle case). For some of these tasks, node insertions can also be among the allowed topology changes, and for some of them also abrupt node deletions.
翻译:本文为获得高动态环境快速分布算法提供了一个算法框架, 在这种算法中, * 任意性地在每一回合中都可能发生许多边缘变化。 我们的算法在先前工作的基础上大有改进,其组合是:(1) 具有1美元(1美元)的摊销时间复杂性,(2) 仅使用$O(log{n})美元-位电文,(3) 对环境动态行为不构成任何限制,(4) 具有确定性, 5 具有中间解决方案的有力保障, (6) 适用于一大批任务。 我们推算这种算法的任务包括最大匹配、 $( 度+1) $- 彩色、 2 代表最小重量脊椎盖和最大独立数据集( 这是最微妙的例子 ) 。 对于其中一些任务, 诺德插入也可以在允许的地形变化中, 而对于其中一些任务, 也可以是突然的节点删除 。