We investigate the parameterized complexity of the recognition problem for the proper $H$-graphs. The $H$-graphs are the intersection graphs of connected subgraphs of a subdivision of a multigraph $H$, and the properness means that the containment relationship between the representations of the vertices is forbidden. The class of $H$-graphs was introduced as a natural (parameterized) generalization of interval and circular-arc graphs by Bir\'o, Hujter, and Tuza in 1992, and the proper $H$-graphs were introduced by Chaplick et al. in WADS 2019 as a generalization of proper interval and circular-arc graphs. For these graph classes, $H$ may be seen as a structural parameter reflecting the distance of a graph to a (proper) interval graph, and as such gained attention as a structural parameter in the design of efficient algorithms. We show the following results. - For a tree $T$ with $t$ nodes, it can be decided in $ 2^{\mathcal{O}(t^2 \log t)} \cdot n^3 $ time, whether an $n$-vertex graph $ G $ is a proper $ T $-graph. For yes-instances, our algorithm outputs a proper $T$-representation. This proves that the recognition problem for proper $H$-graphs, where $H$ required to be a tree, is fixed-parameter tractable when parameterized by the size of $T$. Previously only NP-completeness was known. - Contrasting to the first result, we prove that if $H$ is not constrained to be a tree, then the recognition problem becomes much harder. Namely, we show that there is a multigraph $H$ with 4 vertices and 5 edges such that it is NP-complete to decide whether $G$ is a proper $H$-graph.
翻译:我们调查了适当的 $H 的识别问题的参数复杂性。 $H 的图表是 $H 的多面值子集的连接子子集的交叉图。 正确性意味着, 垂直图的表达方式之间的封闭关系是被禁止的。 $H 的图表是Bir\'o、 Hujter 和 Tuza 的自然( 参数化) 间隔和圆弧图集的集成( 参数化) 。 1992年, $H 的图表是 $ Chaplick 和 Al. 在 WADS 2019 中, 将 $H 的相联子集成的连接子集图集。 对于这些图表类, $H 的显示距离( 正确性) 度, $H 的图集作为结构参数被引入。 我们只显示以下结果: $T $ 美元 和 $ 美元 的树, 美元 和 美元 美元 美元 美元 的直径 等 美元 。 ( t2 m) ( t2) 美元 rationral- ration) ration- max max 。