Adaptive robotics plays an essential role in achieving truly co-creative cyber physical systems. In robotic manipulation tasks, one of the biggest challenges is to estimate the pose of given workpieces. Even though the recent deep-learning-based models show promising results, they require an immense dataset for training. In this paper, we propose two vision-based, multiobject grasp-pose estimation models, the MOGPE Real-Time (RT) and the MOGPE High-Precision (HP). Furthermore, a sim2real method based on domain randomization to diminish the reality gap and overcome the data shortage. We yielded an 80% and a 96.67% success rate in a real-world robotic pick-and-place experiment, with the MOGPE RT and the MOGPE HP model respectively. Our framework provides an industrial tool for fast data generation and model training and requires minimal domain-specific data.
翻译:适应性机器人在实现真正共同创造的网络物理系统方面发挥着不可或缺的作用。 在机器人操作任务中,最大的挑战之一是估计特定工作器件的构成。尽管最近的深学习模型显示出有希望的结果,但它们需要巨大的培训数据集。在本文中,我们提出了两种基于愿景的多点定位估计模型,即MOGPE实时(RT)和MOGPE高精度(HP)。此外,一种基于域随机化的模拟模拟方法,以缩小现实差距并克服数据短缺。我们在现实世界的机器人选址实验中取得了80%和96.67%的成功率,分别是MOGPE RT和MOGPE HP模型。我们的框架为快速数据生成和模型培训提供了一种工业工具,并需要最低限度的域特定数据。