Text summarization aims to generate a short summary for an input text. In this work, we propose a Non-Autoregressive Unsupervised Summarization (NAUS) approach, which does not require parallel data for training. Our NAUS first performs edit-based search towards a heuristically defined score, and generates a summary as pseudo-groundtruth. Then, we train an encoder-only non-autoregressive Transformer based on the search result. We also propose a dynamic programming approach for length-control decoding, which is important for the summarization task. Experiments on two datasets show that NAUS achieves state-of-the-art performance for unsupervised summarization, yet largely improving inference efficiency. Further, our algorithm is able to perform explicit length-transfer summary generation.
翻译:文本总和旨在为输入文本生成一个简短的概要。 在此工作中, 我们建议采用非自动递减、 无人监督的汇总( NAUS) 方法, 不需要平行的培训数据 。 我们的 NAUS 首先进行基于编辑的搜索, 以超常定义的得分为目的, 并生成一个以伪地貌为目的的汇总。 然后, 我们根据搜索结果, 训练一个只使用编码器的非自动递增变变异器 。 我们还提议了一种动态的用于长度控制解码的编程方法, 这对于总和任务很重要 。 对两个数据集的实验显示, NAUS 取得了非被监督的汇总的最先进的性能, 但却在很大程度上提高了推断效率 。 此外, 我们的算法能够进行明确的长度传输摘要生成 。