We study an online version of the max-min fair allocation problem for indivisible items. In this problem, items arrive one by one, and each item must be allocated irrevocably on arrival to one of $n$ agents, who have additive valuations for the items. Our goal is to make the least happy agent as happy as possible. In research on the topic of online allocation, this is a fundamental and natural problem. Our main result is to reveal the asymptotic competitive ratios of the problem for both the adversarial and i.i.d. input models. We design a polynomial-time deterministic algorithm that is asymptotically $1/n$-competitive for the adversarial model, and we show that this guarantee is optimal. To this end, we present a randomized algorithm with the same competitive ratio first and then derandomize it. A natural derandomization fails to achieve the competitive ratio of $1/n$. We instead build the algorithm by introducing a novel technique. When the items are drawn from an unknown identical and independent distribution, we construct a simple polynomial-time deterministic algorithm that outputs a nearly optimal allocation. We analyze the strict competitive ratio and show almost tight bounds for the solution. We further mention some implications of our results on variants of the problem.
翻译:我们研究的是不可分物品的最大公平分配问题的在线版本。 在这个问题中, 物品一个一个一个接一个地到达, 每个物品必须在到达时不可撤销地分配给一个美元代理商, 他们拥有对物品的添加值。 我们的目标是让最不快乐的代理商尽可能快乐。 在对网上分配专题的研究中, 这是一个根本性的自然问题。 我们的主要结果就是揭示对准和i. d. 输入模型的问题的无约束竞争比率。 我们设计了一种多边- 时间确定性算法, 对于对抗模式来说,这种算法是非象征性的 $/n- $- 竞争性的, 我们证明这种保证是最佳的。 为了达到这个目的, 我们提出了一种随机的算法, 具有同样的竞争性比率, 然后将其分解。 一个自然的脱节制无法达到1美元/ n 的竞争性比率。 我们用一种新技术来建立算法。 当项目从未知的相同和独立的分布中抽取出一个简单的多时, 我们用一个简单的多时, 确定性算法, 我们用一个简单的混合的算法, 来分析一个几乎最优化的公式的输出结果。