We study the problem of allocating indivisible goods among agents in a fair manner. While envy-free allocations of indivisible goods are not guaranteed to exist, envy-freeness can be achieved by additionally providing some subsidy to the agents. These subsidies can be alternatively viewed as a divisible good (money) that is fractionally assigned among the agents to realize an envy-free outcome. In this setup, we bound the subsidy required to attain envy-freeness among agents with dichotomous valuations, i.e., among agents whose marginal value for any good is either zero or one. We prove that, under dichotomous valuations, there exists an allocation that achieves envy-freeness with a per-agent subsidy of either $0$ or $1$. Furthermore, such an envy-free solution can be computed efficiently in the standard value-oracle model. Notably, our results hold for general dichotomous valuations and, in particular, do not require the (dichotomous) valuations to be additive, submodular, or even subadditive. Also, our subsidy bounds are tight and provide a linear (in the number of agents) factor improvement over the bounds known for general monotone valuations.
翻译:我们研究的是以公平的方式在代理人之间分配不可分割货物的问题。虽然不能保证不存在无忌妒地分配不可分割货物的问题。虽然不能保证存在无忌妒地分配不可分割货物的问题,但可以通过向代理人提供额外补贴来实现无忌妒的自由。这些补贴也可以被视为一种可分辨的好东西(金钱),在代理人之间被零分分配,以便实现无忌妒的结果。在这种设置中,我们把所需的补贴约束于在持有差分估值的代理人之间实现无妒忌现象,即,在任何货物的边际价值为零或一的代理人之间。我们证明,在两重估值中,存在着一种分配,即以每笔零美元或一美元补贴实现无忌妒现象。此外,这种无忌妒的解决方案可以在标准价值-质模型中有效计算出来。值得注意的是,我们的结果有利于一般差异估值的代理人之间的普遍差异,特别是,不要求(定式)估值是加固的,或更低调的,甚至更低调的代理人之间。此外,我们的补贴约束是紧紧凑的,并且提供了一种已知的单一的指数。