In this article we consider the estimation of the log-normalization constant associated to a class of continuous-time filtering models. In particular, we consider ensemble Kalman-Bucy filter based estimates based upon several nonlinear Kalman-Bucy diffusions. Based upon new conditional bias results for the mean of the afore-mentioned methods, we analyze the empirical log-scale normalization constants in terms of their $\mathbb{L}_n-$errors and conditional bias. Depending on the type of nonlinear Kalman-Bucy diffusion, we show that these are of order $(\sqrt{t/N}) + t/N$ or $1/\sqrt{N}$ ($\mathbb{L}_n-$errors) and of order $[t+\sqrt{t}]/N$ or $1/N$ (conditional bias), where $t$ is the time horizon and $N$ is the ensemble size. Finally, we use these results for online static parameter estimation for above filtering models and implement the methodology for both linear and nonlinear models.
翻译:在本篇文章中,我们考虑对与某类连续过滤模型相关的日志正常化常数的估计。特别是,我们考虑基于若干非线性卡曼-布西扩散的混合卡尔曼-布西过滤器估计值。根据上述方法平均值的新的有条件偏差结果,我们从$\mathb{L ⁇ n-$orors和有条件的偏差的角度分析了实证的日志正常化常数。根据非线性卡尔曼-布西扩散的类型,我们表明这些是$(sqrt{t/N})+ t/n$或$/sqrt{N}($\mathb{L ⁇ n-$rors)和$[$${st{qrt{t}]/N$或$/N/N$(有条件的偏差)的数值,其中美元是时间范围,美元是共同值。最后,我们用这些结果对超过过滤模型的在线静态参数估计值进行在线估算,并对线性和非线性模型采用方法。