In this article we consider the estimation of the log-normalization constant associated to a class of continuous-time filtering models. In particular, we consider ensemble Kalman-Bucy filter based estimates based upon several nonlinear Kalman-Bucy diffusions. Based upon new conditional bias results for the mean of the afore-mentioned methods, we analyze the empirical log-scale normalization constants in terms of their $\mathbb{L}_n-$errors and conditional bias. Depending on the type of nonlinear Kalman-Bucy diffusion, we show that these are of order $(\sqrt{t/N}) + t/N$ or $1/\sqrt{N}$ ($\mathbb{L}_n-$errors) and of order $[t+\sqrt{t}]/N$ or $1/N$ (conditional bias), where $t$ is the time horizon and $N$ is the ensemble size. Finally, we use these results for online static parameter estimation for above filtering models and implement the methodology for both linear and nonlinear models.


翻译:在本篇文章中,我们考虑对与某类连续过滤模型相关的日志正常化常数的估计。特别是,我们考虑基于若干非线性卡曼-布西扩散的混合卡尔曼-布西过滤器估计值。根据上述方法平均值的新的有条件偏差结果,我们从$\mathb{L ⁇ n-$orors和有条件的偏差的角度分析了实证的日志正常化常数。根据非线性卡尔曼-布西扩散的类型,我们表明这些是$(sqrt{t/N})+ t/n$或$/sqrt{N}($\mathb{L ⁇ n-$rors)和$[$${st{qrt{t}]/N$或$/N/N$(有条件的偏差)的数值,其中美元是时间范围,美元是共同值。最后,我们用这些结果对超过过滤模型的在线静态参数估计值进行在线估算,并对线性和非线性模型采用方法。

0
下载
关闭预览

相关内容

专知会员服务
85+阅读 · 2020年12月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Python图像处理,366页pdf,Image Operators Image Processing in Python
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
BERT源码分析PART I
AINLP
38+阅读 · 2019年7月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月22日
Scalable computation for Bayesian hierarchical models
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
BERT源码分析PART I
AINLP
38+阅读 · 2019年7月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员