Although people have the ability to engage in vapid dialogue without effort, this may not be a uniquely human trait. Since the 1960's researchers have been trying to create agents that can generate artificial conversation. These programs are commonly known as chatbots. With increasing use of neural networks for dialog generation, some conclude that this goal has been achieved. This research joins the quest by creating a dialog generating Recurrent Neural Network (RNN) and by enhancing the ability of this network with auxiliary loss functions and a beam search. Our custom loss functions achieve better cohesion and coherence by including calculations of Maximum Mutual Information (MMI) and entropy. We demonstrate the effectiveness of this system by using a set of custom evaluation metrics inspired by an abundance of previous research and based on tried-and-true principles of Natural Language Processing.


翻译:虽然人们有能力不费吹灰之力地参与无所事事的对话,但这可能不是一个独特的人性特征。 自1960年代以来,研究人员一直在努力创建能产生人为对话的代理商。这些程序通常被称为聊天机。随着越来越多的使用神经网络来生成对话,一些人得出结论,这一目标已经实现。通过创建产生经常性神经网络(NNN)的对话,通过增强这个网络的辅助损失功能和波束搜索能力,这一研究加入了这一追求。我们的习惯损失功能通过计算最大相互信息(MMI)和英特罗佩(entropy),实现了更好的凝聚力和一致性。我们通过使用一套基于大量先前研究的、以经过考验的自然语言处理原则为基础的定制评估指标,证明了这个系统的有效性。

0
下载
关闭预览

相关内容

损失函数,在AI中亦称呼距离函数,度量函数。此处的距离代表的是抽象性的,代表真实数据与预测数据之间的误差。损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
GAN | GAN介绍(1)
中国科学院网络数据重点实验室
17+阅读 · 2017年7月26日
Neural Image Captioning
Arxiv
5+阅读 · 2019年7月2日
Arxiv
3+阅读 · 2018年12月18日
Arxiv
4+阅读 · 2018年3月30日
Arxiv
3+阅读 · 2018年3月14日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
GAN | GAN介绍(1)
中国科学院网络数据重点实验室
17+阅读 · 2017年7月26日
Top
微信扫码咨询专知VIP会员