Certified defenses based on convex relaxations are an established technique for training provably robust models. The key component is the choice of relaxation, varying from simple intervals to tight polyhedra. Paradoxically, however, training with tighter relaxations can often lead to worse certified robustness. The poor understanding of this paradox has forced recent state-of-the-art certified defenses to focus on designing various heuristics in order to mitigate its effects. In contrast, in this paper we study the underlying causes and show that tightness alone may not be the determining factor. Concretely, we identify two key properties of relaxations that impact training dynamics: continuity and sensitivity. Our extensive experimental evaluation demonstrates that these two factors, observed alongside tightness, explain the drop in certified robustness for popular relaxations. Further, we investigate the possibility of designing and training with relaxations that are tight, continuous and not sensitive. We believe the insights of this work can help drive the principled discovery of new and effective certified defense mechanisms.


翻译:以康韦克斯放松为基础的经认证的辩护是训练稳健模型的既定技术。 关键组成部分是选择放松, 从简单的间隔到紧凑的聚己体。 然而,自相矛盾的是, 更严格放松的培训往往会导致更糟糕的经认证的稳健性。 对这一悖论的不理解迫使最近最先进的经认证的辩护侧重于设计各种休养术,以减轻其影响。 相反,我们在本文件中研究根本原因,并表明光是紧凑可能不是决定性因素。 具体地说,我们确定了影响培训动态的放松的两个关键特性:连续性和敏感性。 我们的广泛实验性评估表明,这两个因素与紧凑一起观察的,可以解释民众放松的经认证的稳健性下降的原因。 此外,我们调查了以紧凑、连续和不敏感的放松措施设计和培训的可能性。 我们相信,这项工作的洞察力有助于推动有原则地发现新的和有效的经认证的防御机制。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
35+阅读 · 2020年12月28日
专知会员服务
53+阅读 · 2020年9月7日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
157+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员