Multi-scale biomedical knowledge networks are expanding with emerging experimental technologies. Link prediction is increasingly used especially in bipartite biomedical networks. We propose a Graph Neural Networks (GNN) method, namely Graph Pair based Link Prediction model (GPLP), for predicting biomedical network links simply based on their topological interaction information. In GPLP, 1-hop subgraphs extracted from known network interaction matrix is learnt to predict missing links. To evaluate our method, three heterogeneous biomedical networks were used, i.e. Drug-Target Interaction network (DTI), Compound-Protein Interaction network (CPI) from NIH Tox21, and Compound-Virus Inhibition network (CVI). In 5-fold cross validation, our proposed GPLP method significantly outperforms over the state-of-the-art baselines. Besides, robustness is tested with different network incompleteness. Our method has the potential applications in other biomedical networks.
翻译:多规模生物医学知识网络正在随着新兴实验技术的出现而扩大。链接预测正在越来越多地用于双方生物医学网络。我们提议了一种图形神经网络(GNN)方法,即基于平方图的链接预测模型(GPLP),用于仅仅根据其地形相互作用信息预测生物医学网络链接。在GPLP中,从已知网络互动矩阵中提取的1HP子子图可以预测缺失的链接。为了评估我们的方法,使用了三个混杂的生物医学网络,即:药物-目标互动网络(DTI)、NIH Tox21的复合-蛋白互动网络(CPI)和复合-Virus Inhibition网络(CVI)。在5倍交叉验证中,我们提议的GPLP方法大大超越了最新基线。此外,强性测试网络的不完全性也不同。我们的方法在其他生物医学网络中具有潜在应用。