Psychoacoustic experiments have shown that directional properties of, in particular, the direct sound, salient reflections, and the late reverberation of an acoustic room response can have a distinct influence on the auditory perception of a given room. Spatial room impulse responses (SRIRs) capture those properties and thus are used for direction-dependent room acoustic analysis and virtual acoustic rendering. This work proposes a subspace method that decomposes SRIRs into a direct part, which comprises the direct sound and the salient reflections, and a residual, to facilitate enhanced analysis and rendering methods by providing individual access to these components. The proposed method is based on the generalized singular value decomposition and interprets the residual as noise that is to be separated from the other components of the reverberation. It utilizes a noise estimate to identify large generalized singular values, which are then attributed to the direct part. By advancing from the end of the SRIR toward the beginning while iteratively updating the noise estimate, the method is able to work with anisotropic and slowly time-varying reverberant sound fields. The proposed method does not require direction-of-arrival estimation of reflections and shows an improved separation of the direct part from the residual compared to an existing approach. A case study with measured SRIRs suggests a high robustness of the method under different acoustic conditions. A reference implementation is provided.


翻译:声学实验显示,声室反应的直接声音、突出反射和延迟反射的定向性能,尤其是直接声音、突出反射和声音室反应的延迟反射,能够对特定房间的听觉感知产生明显影响。空间室脉冲反应(SRIRs)捕捉这些特性,因此用于定向依赖室声学分析和虚拟声学显示。这项工作提出了一种子空间方法,将SRIRs分解成直接部分,包括直接声音和突出反射及剩余部分,通过提供个人访问这些部件的机会,促进强化分析和提供方法。拟议方法以一般单值分解为基础,并将残余的噪音解释为与振动反应室其他部分分离的噪音。使用噪音估计来确定大型通用奇特值,然后归因于直接部分。通过从SR的结尾向开始阶段推进,同时反复更新噪音估计,该方法能够以偏移和缓慢时间反射的反射场为基础开展工作。拟议方法以一般单值分解为余音部分,并不需要将静态与反射场进行高度分析。拟议方法表明,从目前对静态进行高方向和高压分析的方法表明了高压分析。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月16日
Arxiv
13+阅读 · 2021年5月25日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员