Cryptographic Self-Selection is a subroutine used to select a leader for modern proof-of-stake consensus protocols, such as Algorand. In cryptographic self-selection, each round $r$ has a seed $Q_r$. In round $r$, each account owner is asked to digitally sign $Q_r$, hash their digital signature to produce a credential, and then broadcast this credential to the entire network. A publicly-known function scores each credential in a manner so that the distribution of the lowest scoring credential is identical to the distribution of stake owned by each account. The user who broadcasts the lowest-scoring credential is the leader for round $r$, and their credential becomes the seed $Q_{r+1}$. Such protocols leave open the possibility of a selfish-mining style attack: a user who owns multiple accounts that each produce low-scoring credentials in round $r$ can selectively choose which ones to broadcast in order to influence the seed for round $r+1$. Indeed, the user can pre-compute their credentials for round $r+1$ for each potential seed, and broadcast only the credential (among those with a low enough score to be the leader) that produces the most favorable seed. We consider an adversary who wishes to maximize the expected fraction of rounds in which an account they own is the leader. We show such an adversary always benefits from deviating from the intended protocol, regardless of the fraction of the stake controlled. We characterize the optimal strategy; first by proving the existence of optimal positive recurrent strategies whenever the adversary owns last than $38\%$ of the stake. Then, we provide a Markov Decision Process formulation to compute the optimal strategy.


翻译:加密自选是一种子常规, 用来选择现代证明获得共识协议( 如 Algorand ) 的领导者。 在加密自选中, 每轮美元都有一个种子 $ 美元 。 在回合 $ 美元 中, 每个账户所有者被要求用数字签名 $ r r r, 并用数字签名 来制作一份证书, 然后向整个网络播放这个证书。 一个公开的函数, 以某种方式评分每份评分, 使最低评分的评分分布与每个账户拥有的股价分配相同。 在加密自选中, 每轮的评分为美元 。 播放最低评分的用户是每轮的领先者, 他们的评分成为 $ r+1 $ 的种子 。 这样的评分可以打开一个自私的定风格攻击的可能性: 一个拥有多个账户的用户, 每笔低评分的评分为每轮的评分, 可以选择哪个是用来影响自己 $+1 美元 的种子的评分。 事实上,, 用户可以用最高级评分的预估的预估的评分 。

0
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
42+阅读 · 2022年6月30日
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
25+阅读 · 2021年4月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月10日
Arxiv
0+阅读 · 2022年9月9日
Arxiv
0+阅读 · 2022年9月8日
VIP会员
相关VIP内容
自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
42+阅读 · 2022年6月30日
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
25+阅读 · 2021年4月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员