Information surrounds people in modern life. Text is a very efficient type of information that people use for communication for centuries. However, automated text-in-the-wild recognition remains a challenging problem. The major limitation for a DL system is the lack of training data. For the competitive performance, training set must contain many samples that replicate the real-world cases. While there are many high-quality datasets for English text recognition; there are no available datasets for Russian language. In this paper, we present a large-scale human-labeled dataset for Russian text recognition in-the-wild. We also publish a synthetic dataset and code to reproduce the generation process


翻译:信息环绕现代人们的生活,文本是人们使用了几个世纪用于交流的一种非常有效的信息类型。然而,自动化的文本外野识别仍然是一个具有挑战性的问题。DL系统的主要限制是缺乏训练数据。为了获得竞争性能,训练集必须包含许多样本,以复制真实世界的情况。虽然有许多高质量的英文文本识别数据集,但没有可用的俄文数据集。在本文中,我们提出一个适用于野外俄文文本识别的大规模人工标注数据集。我们还发布了一个合成数据集和代码以重现生成过程。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
自然语言处理常见数据集、论文最全整理分享
深度学习与NLP
11+阅读 · 2019年1月26日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【数据集】新的YELP数据集官方下载
机器学习研究会
16+阅读 · 2017年8月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月18日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
18+阅读 · 2020年10月9日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员