We study the CHAIN communication problem introduced by Cormode et al. [ICALP 2019]. It is a generalization of the well-studied INDEX problem. For $k\geq 1$, in CHAIN$_{n,k}$, there are $k$ instances of INDEX, all with the same answer. They are shared between $k+1$ players as follows. Player 1 has the first string $X^1 \in \{0,1\}^n$, player 2 has the first index $\sigma^1 \in [n]$ and the second string $X^2 \in \{0,1\}^n$, player 3 has the second index $\sigma^2 \in [n]$ along with the third string $X^3 \in \{0,1\}^n$, and so on. Player $k+1$ has the last index $\sigma^k \in [n]$. The communication is one way from each player to the next, starting from player 1 to player 2, then from player 2 to player 3 and so on. Player $k+1$, after receiving the message from player $k$, has to output a single bit which is the answer to all $k$ instances of INDEX. It was proved that the CHAIN$_{n,k}$ problem requires $\Omega(n/k^2)$ communication by Cormode et al., and they used it to prove streaming lower bounds for approximation of maximum independent sets. Subsequently, it was used by Feldman et al. [STOC 2020] to prove lower bounds for streaming submodular maximization. However, these works do not get optimal bounds on the communication complexity of CHAIN$_{n,k}$, and in fact, it was conjectured by Cormode et al. that $\Omega(n)$ bits are necessary, for any $k$. As our main result, we prove the optimal lower bound of $\Omega(n)$ for CHAIN$_{n,k}$. This settles the open conjecture of Cormode et al. in the affirmative. The key technique is to use information theoretic tools to analyze protocols over the Jensen-Shannon divergence measure, as opposed to total variation distance. As a corollary, we get an improved lower bound for approximation of maximum independent set in vertex arrival streams through a reduction from CHAIN directly.
翻译:暂无翻译