In frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) wireless systems, deep learning techniques are regarded as one of the most efficient solutions for CSI recovery. In recent times, to achieve better CSI magnitude recovery at base stations, advanced learning-based CSI feedback solutions decouple magnitude and phase recovery to fully leverage the strong correlation between current CSI magnitudes and those of previous time slots, uplink band, and near locations. However, the CSI phase recovery is a major challenge to further enhance the CSI recovery owing to its complicated patterns. In this letter, we propose a learning-based CSI feedback framework based on limited feedback and magnitude-aided information. In contrast to previous works, our proposed framework with a proposed loss function enables end-to-end learning to jointly optimize the CSI magnitude and phase recovery performance. Numerical simulations show that, the proposed loss function outperform alternate approaches for phase recovery over the overall CSI recovery in both indoor and outdoor scenarios. The performance of the proposed framework was also examined using different core layer designs.


翻译:在重复频率(FDD)的大规模多投入多产出无线系统(MIMO)中,深层次学习技术被视为是CSI恢复的最有效解决办法之一,最近,为了在基地站实现更好的CSI规模恢复,先进的基于学习的CSI反馈解决方案分量和阶段恢复,以充分利用CSI现有数量与前一个时段、上链带和近地点的强烈关联;然而,CSI阶段恢复由于其复杂模式,是进一步加强CSI恢复的一大挑战。在本信内,我们提议基于有限反馈和量辅助信息的基于学习的CSI反馈框架。与以往的工作不同,我们提议的有拟议损失功能的框架使得终端到终端学习能够共同优化CSI规模和阶段恢复绩效。数字模拟表明,拟议的损失功能超越了在室内和室外总体 CSI恢复过程中的替代方法。还利用不同的核心层设计审查了拟议框架的执行情况。

0
下载
关闭预览

相关内容

损失函数,在AI中亦称呼距离函数,度量函数。此处的距离代表的是抽象性的,代表真实数据与预测数据之间的误差。损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。
专知会员服务
25+阅读 · 2021年4月2日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年4月23日
Arxiv
0+阅读 · 2021年4月22日
Phase-aware Speech Enhancement with Deep Complex U-Net
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员