The ground truth used for training image, video, or speech quality prediction models is based on the Mean Opinion Scores (MOS) obtained from subjective experiments. Usually, it is necessary to conduct multiple experiments, mostly with different test participants, to obtain enough data to train quality models based on machine learning. Each of these experiments is subject to an experiment-specific bias, where the rating of the same file may be substantially different in two experiments (e.g. depending on the overall quality distribution). These different ratings for the same distortion levels confuse neural networks during training and lead to lower performance. To overcome this problem, we propose a bias-aware loss function that estimates each dataset's biases during training with a linear function and considers it while optimising the network weights. We prove the efficiency of the proposed method by training and validating quality prediction models on synthetic and subjective image and speech quality datasets.


翻译:用于培训图像、视频或语言质量预测模型的地面真实性依据是主观实验得出的平均意见评分(MOS),通常需要进行多次实验,主要是与不同的测试参与者进行,以获得足够的数据来培训基于机器学习的高质量模型,其中每项实验都存在实验性偏差,同一文件的评分在两个实验中可能大不相同(例如,取决于总体质量分布)。同样的扭曲程度的不同评分在培训期间混淆神经网络,导致性能下降。为了克服这一问题,我们提议了一个有偏差感的损失函数,在以线性功能进行的培训中估计每个数据集的偏差,并在优化网络加权的同时加以考虑。我们通过对合成和主观图像和语音质量数据集进行培训和验证质量预测模型,证明拟议方法的效率。我们通过对合成和主观图像和语音质量数据集进行培训和验证,证明拟议方法的效率。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2018年5月1日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员