We consider a particular instance of a common problem in recommender systems: using a database of book reviews to inform user-targeted recommendations. In our dataset, books are categorized into genres and sub-genres. To exploit this nested taxonomy, we use a hierarchical model that enables information pooling across across similar items at many levels within the genre hierarchy. The main challenge in deploying this model is computational: the data sizes are large, and fitting the model at scale using off-the-shelf maximum likelihood procedures is prohibitive. To get around this computational bottleneck, we extend a moment-based fitting procedure proposed for fitting single-level hierarchical models to the general case of arbitrarily deep hierarchies. This extension is an order of magnetite faster than standard maximum likelihood procedures. The fitting method can be deployed beyond recommender systems to general contexts with deeply-nested hierarchical generalized linear mixed models.
翻译:在推荐人系统中,我们考虑到一个共同问题的特殊实例:使用图书审查数据库来为针对用户的建议提供参考。在我们的数据集中,书籍被分类为类型和次类别。为了利用这种嵌套分类学,我们使用一个等级模型,以便在族系等级体系内许多级别上将类似项目的信息汇集在一起。部署这一模型的主要挑战是计算:数据大小很大,使用现成最大可能性程序使模型在规模上与模型相匹配是令人望而却步的。为了绕过这个计算瓶颈,我们把一个基于时空的适合程序,为任意深层等级的普通情况下安装单级等级模型。这一扩展是一个磁铁的顺序,比标准最大可能性程序更快。在推荐人系统之外,可以将适当的方法运用到具有深层的等级普遍线性混合模型的一般环境中。