Robotic manipulators are widely used in applications that require fast and precise motion. Such devices, however, are prompt to nonlinear control issues due to the flexibility in joints and the friction in the motors within the dynamics of their rigid part. To address these issues, the Linear Matrix Inequalities (LMIs) and Parallel Distributed Compensation (PDC) approaches are implemented in the Takagy-Sugeno Fuzzy Model (T-SFM). We propose the following methodology; initially, the state space equations of the nonlinear manipulator model are derived. Next, a Takagy-Sugeno Fuzzy Model (T-SFM) technique is used for linearizing the state space equations of the nonlinear manipulator. The T-SFM controller is developed using the Parallel Distributed Compensation (PDC) method. The prime concept of the designed controller is to compensate for all the fuzzy rules. Furthermore, the Linear Matrix Inequalities (LMIs) are applied to generate adequate cases to ensure stability and control. Convex programming methods are applied to solve the developed LMIs problems. Simulations developed for the proposed model show that the proposed controller stabilized the system with zero tracking error in less than 1.5 s.
翻译:在需要快速和精确运动的应用中,机器人操纵器被广泛用于需要快速和精确运动的应用程序中。但是,这些装置能够迅速用于非线性控制问题,因为联合中的灵活性和发动机在其僵硬部分的动态内摩擦。为了解决这些问题,Takagagy-Sugeno Fuzzy 模型(T-SFM)中采用了线性矩阵不平等和平行分配补偿(PDC)方法。我们建议采用以下方法;最初,将非线性操纵器模型的状态空间方程式制成。接着,使用Takagy-Sugunno Fuzzy模型(T-SFM)技术将非线性操纵器的状态空间方程式线性化。T-SFM控制器正在使用平行分配补偿(PDC)方法来开发这些问题。设计控制器的主要概念是补偿所有模糊规则。此外,将线性矩阵不平等(LMIs)用于生成足够的案例以确保稳定性和控制。将Conx编程方法用于解决开发的LMIs的状态方程式,而没有稳定地显示提议的轨道稳定度的系统。模拟模拟的轨道显示比稳定度。