This article discusses a mixed FE technique for 3D nonlinear elasticity using a Hu-Washizu (HW) type variational principle. Here, the deformed configuration and sections from its cotangent bundle are taken as additional input arguments. The critical points of the HW functional enforce compatibility of these sections with the configuration, in addition to mechanical equilibrium and constitutive relations. The present FE approximation distinguishes a vector from a 1-from, a feature not commonly found in FE approximations. This point of view permits us to construct finite elements with vastly superior performance. Discrete approximations for the differential forms appearing in the variational principle are constructed with ideas borrowed from finite element exterior calculus. The discrete equations describing mechanical equilibrium, compatibility and constitutive rule, are obtained by extemizing the discrete functional with respect to appropriate DoF, which are then solved using the Newton's method. This mixed FE technique is then applied to benchmark problems wherein conventional displacement based approximations encounter locking and checker boarding.


翻译:本文讨论使用 Hu- Washizu (HW) 类型变异原则的 3D 非线性弹性混合FE 技术。 这里, 其相容组合的变形配置和部分作为附加输入参数。 HW 功能的临界点除机械平衡和构成关系外, 还可以强制这些部分与配置的兼容性。 当前的 FE 近似点将矢量与 1 个从 1 个 到 1 个 的矢量区分开来, 一种在 FE 近似中常见的特性 。 这个观察点允许我们用非常优越的性能构建有限的元素。 变异性原则中不同形式的差异的分形近似值是用从外部微积中借用的概念构建的。 描述机械平衡、 兼容性和构成规则的离异方程式, 是通过在适当的 DoF 上扩展离性功能而获得的, 然后用 Newton 方法加以解决。 这种混合的FE 技术然后用于基准问题, 即基于常规迁移的近似值遇到锁定和校验登时的基准问题 。

0
下载
关闭预览

相关内容

专知会员服务
21+阅读 · 2021年6月28日
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
Python编程基础,121页ppt
专知会员服务
48+阅读 · 2021年1月1日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
14+阅读 · 2019年5月29日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月26日
Arxiv
0+阅读 · 2021年10月22日
VIP会员
相关VIP内容
专知会员服务
21+阅读 · 2021年6月28日
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
Python编程基础,121页ppt
专知会员服务
48+阅读 · 2021年1月1日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
14+阅读 · 2019年5月29日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员