Consider two independent exponential populations having different unknown location parameters and a common unknown scale parameter. Call the population associated with the larger location parameter as the "best" population and the population associated with the smaller location parameter as the "worst" population. For the goal of selecting the best (worst) population a natural selection rule, that has many optimum properties, is the one which selects the population corresponding to the larger (smaller) minimal sufficient statistic. In this article, we consider the problem of estimating the location parameter of the population selected using this natural selection rule. For estimating the location parameter of the selected best population, we derive the uniformly minimum variance unbiased estimator (UMVUE) and show that the analogue of the best affine equivariant estimators (BAEEs) of location parameters is a generalized Bayes estimator. We provide some admissibility and minimaxity results for estimators in the class of linear, affine and permutation equivariant estimators, under the criterion of scaled mean squared error. We also derive a sufficient condition for inadmissibility of an arbitrary affine and permutation equivariant estimator. We provide similar results for the problem of estimating the location parameter of the selected population when the selection goal is that of selecting the worst exponential population. Finally, we provide a simulation study to compare, numerically, the performances of some of the proposed estimators.


翻译:将与较大位置参数相关的人口称为“ 最佳” 人口,将与较小位置参数相关的人口称为“ 最优” 人口,将与较小位置参数相关的人口称为“ 最坏” 人口。为了选择最佳( 最坏) 人口的目标,自然选择规则具有许多最佳性能,是选择与较大( 较小) 最低足够统计相对的人口相对应的人口的。在本条中,我们考虑了使用此自然选择规则估算选定人口的位置参数的问题。在估计选定最佳人口的位置参数时,我们得出统一的最低差异不偏差估计值(UMVUEU),并显示最佳偏差估计估计估计值(BAEEE)的类比值是一个通用的海湾估计值。我们为线性、 亲和 定和 定调等同性估计器类中的估计者提供了一些可接受性和最小性结果。我们为任意选择的不容许性定偏差估计最差估计值的定数和定数的比值结果,我们为选择最差的定数的定数的定数的定数的定数的定数结果,为我们为最差的定数的定数的定数的定数的定数的定数的定数的定数的定数的定数的定数的定数的定数的定数的定数的定数的定数,为定数的定数的定数的定数的定数的定数的定数的定数的定数的定数的定数的定数的定数的定数,为定数。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
【经典书】C语言傻瓜式入门(第二版),411页pdf
专知会员服务
52+阅读 · 2020年8月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
CVPR2019 有关姿态估计方面的论文和代码
极市平台
4+阅读 · 2019年7月13日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
CVPR 2019 | 重磅!34篇 CVPR2019 论文实现代码
AI研习社
11+阅读 · 2019年6月21日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Viewpoint Estimation-Insights & Model
Arxiv
3+阅读 · 2018年7月3日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
CVPR2019 有关姿态估计方面的论文和代码
极市平台
4+阅读 · 2019年7月13日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
CVPR 2019 | 重磅!34篇 CVPR2019 论文实现代码
AI研习社
11+阅读 · 2019年6月21日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员