We present a compatible space-time hybridizable/embedded discontinuous Galerkin discretization for nonlinear free-surface waves. We pose this problem in a two-fluid (liquid and gas) domain and use a time-dependent level-set function to identify the sharp interface between the two fluids. The incompressible two-fluidd equations are discretized by an exactly mass conserving space-time hybridizable discontinuous Galerkin method while the level-set equation is discretized by a space-time embedded discontinuous Galerkin method. Different from alternative discontinuous Galerkin methods is that the embedded discontinuous Galerkin method results in a continuous approximation of the interface. This, in combination with the space-time framework, results in an interface-tracking method without resorting to smoothing techniques or additional mesh stabilization terms.
翻译:对于非线性自由地表波,我们提出了一个兼容的时空混合/混合的加列尔金分离法。我们在两个流体(液体和气体)域中提出这一问题,并使用一个取决于时间的定级功能来辨别两种流体之间的尖锐界面。不可压缩的双流方程式通过一个完全大规模保存的时空混合不连续的加列尔金法分离,而定级方程式则通过一个时空嵌入的不连续加列尔金法分离。不同于不连续的替代加列尔金法,即嵌入的不连续加列尔金法导致界面的连续近似。这与空间时框架相结合,在不使用平滑技术或额外的网状稳定术语的情况下,在界面跟踪法中产生结果。