The local computation of Linial [FOCS'87] and Naor and Stockmeyer [STOC'93] concerns with the question of whether a locally definable distributed computing problem can be solved locally: for a given local CSP whether a CSP solution can be constructed by a distributed algorithm using local information. In this paper, we consider the problem of sampling a uniform CSP solution by distributed algorithms, and ask whether a locally definable joint distribution can be sampled from locally. More broadly, we consider sampling from Gibbs distributions induced by weighted local CSPs in the LOCAL model. We give two Markov chain based distributed algorithms which we believe to represent two fundamental approaches for sampling from Gibbs distributions via distributed algorithms. The first algorithm generically parallelizes the single-site sequential Markov chain by iteratively updating a random independent set of variables in parallel, and achieves an $O(\Delta\log n)$ time upper bound in the LOCAL model, where $\Delta$ is the maximum degree, when the Dobrushin's condition for the Gibbs distribution is satisfied. The second algorithm is a novel parallel Markov chain which proposes to update all variables simultaneously yet still guarantees to converge correctly with no bias. It surprisingly parallelizes an intrinsically sequential process: stabilizing to a joint distribution with massive local dependencies, and may achieve an optimal $O(\log n)$ time upper bound independent of the maximum degree $\Delta$ under a stronger mixing condition. We also show a strong $\Omega(diam)$ lower bound for sampling independent set in graphs with maximum degree $\Delta\ge 6$. This lower bound holds even when every node is aware of the graph. This gives a strong separation between sampling and constructing locally checkable labelings.


翻译:Linial [FOCS'87] 和 Naor 和 Stockmeyer [STOC'93] 的本地计算对本地可定义的可定义分布计算问题能否在本地解决的问题感到关切:对于特定本地的 CSP 本地的 CSP 解决方案能否使用本地信息的分布算法构建。 在本文中, 我们考虑通过分布算法对统一的 CSP 解决方案进行抽样的问题, 并询问是否可以从本地的可定义联合分配解决方案进行抽样。 更广泛地说, 我们考虑从Gibbs 分布法中加权的本地本地的本地的 CSP 。 我们给两个基于 Markov 链的基于本地可定义的分布算法, 我们认为这代表了通过分布算法的 Gibs 分布法进行抽样的两个基本方法。 第一个算法将单站点的连续的Markov 链条以迭接方式同步地同步更新一个随机独立的变量集, 并在 LOCAL 模式中实现一个$ $ Delta n 的上限。 当Dobrushinal deal deal delist lax lax lax lax lax lady a mail dal dal deal deliver liver liver liver liver list rmalliver ral se seal selevaldal se se se se se se se se, 当我们 rout rlationslations ral ral ral ral raldaldaldaldald 。 当我们算算出一个稳定一个稳定的本地的 raldald ral raldaldaldaldaldaldal raldal ral ral ral ral rl rl ral ral ral ral ral ral ral ral ral ral rl ral rl ral ral ral r r ral r r ral ral ral r), 当在本地的 r r r r ral r

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月19日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员