Ocean dynamics constitute a source of incertitude in determining the ocean's role in complex climatic phenomena. Current observation systems have limitations in achieving sufficiently statistical precision for three-dimensional oceanic data. It is crucial knowledge to describe the behavior of internal ocean structures. We present the data-driven approaches which explore latent class regressions and deep regression neural networks in modeling ocean dynamics in the extensions of Gulf Stream and Kuroshio currents. The obtained results show a promising data-driven direction for understanding the ocean's characteristics, including salinity and temperature, in both spatial and temporal dimensions in the turbulent regions. Our source codes are publicly available at https://github.com/v18nguye/gulfstream-lrm and at https://github.com/sagudelor/Kuroshio.
翻译:在确定海洋在复杂的气候现象中的作用方面,海洋动态构成了一种不可靠的来源。目前的观测系统在对三维海洋数据达到足够的统计精确度方面有局限性。描述内部海洋结构的行为至关重要。我们介绍了数据驱动方法,以探索潜伏级回归和深回归神经网络,以模拟海湾溪流和Kuroshio洋流延伸的海洋动态。获得的结果显示,在动荡地区的空间和时空范围内,以数据驱动的方式了解海洋特征,包括盐度和温度,方向很有希望。我们的源码可在https://github.com/v18nguye/gulfstre-lrm和https://github.com/sagudelor/Kuroshio上公开查阅。