Learning from Demonstration (LfD) aims to encode versatile skills from human demonstrations. The field has been gaining popularity since it facilitates knowledge transfer to robots without requiring expert knowledge in robotics. During task executions, the robot motion is usually influenced by constraints imposed by environments. In light of this, task-parameterized LfD (TP-LfD) encodes relevant contextual information in reference frames, enabling better skill generalization to new situations. However, most TP-LfD algorithms require multiple demonstrations in various environment conditions to ensure sufficient statistics for a meaningful model. It is not a trivial task for robot users to create different situations and perform demonstrations under all of them. Therefore, this paper presents a novel concept for learning motion policies from few demonstrations by finding the reference frame weights which capture frame importance/relevance during task executions. Experimental results in both simulation and real robotic environments validate our approach.
翻译:学习从演示(LfD)的目的是将多样化的技能从人类演示中编码。由于它实现了知识向机器人的传输,而无需专业机器人知识,因此该领域越来越受到欢迎。在任务执行过程中,机器人动作通常受到环境施加的限制。在这种情况下,任务参数化LfD(TP-LfD)在参考帧中编码了相关的上下文信息,使得更好地推广到新情况的技能。然而,大多数TP-LfD算法需要在各种环境条件下多次演示,以确保建立有意义的模型所需要的充分统计学。对于机器人用户来说,在所有情况下创建不同的情况并进行演示并不是一项微不足道的任务。因此,本文提出了一种新的概念,通过找到参考帧权重来学习运动策略,这些权重在任务执行过程中捕捉了帧的重要性或相关性。仿真实验和实际机器人环境中的实验结果验证了我们的方法。