When AI tools can generate many solutions, some human preference must be applied to determine which solution is relevant to the current project. One way to find those preferences is interactive search-based software engineering (iSBSE) where humans can influence the search process. This paper argues that when optimizing a model using human-in-the-loop, data mining methods such as our SNEAK tool (that recurses into divisions of the data) perform better than standard iSBSE methods (that mutates multiple candidate solutions over many generations). For our case studies, SNEAK runs faster, asks fewer questions, achieves better solutions (that are within 3% of the best solutions seen in our sample space), and scales to large problems (in our experiments, models with 1000 variables can be explored with half a dozen interactions where, each time, we ask only four questions). Accordingly, we recommend SNEAK as a baseline against which future iSBSE work should be compared. To facilitate that, all our scripts are online at https://github.com/ai-se/sneak.
翻译:当AI工具能够产生许多解决方案时,必须运用人类偏好来确定哪些解决方案与当前项目相关。找到这些偏好的方法之一是交互式搜索软件工程(iSBSE),让人类能够影响搜索过程。本文认为,在优化使用人际圈中的模型时,数据挖掘方法,例如我们的SnEAK工具(可转换成数据分解)比标准的ISBSSE方法(在多代人之间转换多种候选解决方案)效果更好。对于我们的案例研究,SnEAK运行得更快,提问较少,实现更好的解决方案(在抽样空间所看到的最佳解决方案的3%之内),以及达到大问题的尺度(在我们的实验中,有1000个变量的模型可以用半打的相互作用来探索,我们每次只问四个问题 ) 。 因此,我们建议将SnEAK作为基准,作为未来ISE工作的比较基准。为了方便,我们所有的脚本都在 https://github.com/ai-se/sneak在线。