In this communication, we address the problem of approximating the atoms of a parametric dictionary, commonly encountered in the context of sparse representations in "continuous" dictionaries. We focus on the case of translation-invariant dictionaries, where the inner product between atoms only depends on the difference between parameters. We investigate the following general question: is there some low-rank approximation of the dictionary $ which interpolates a subset of atoms while preserving the translation-invariant nature of the original dictionary? We derive necessary and sufficient conditions characterizing the existence of such an "interpolating" and "translation-invariant" low-rank approximation. Moreover, we provide closed-form expressions of such a dictionary when it exists. We illustrate the applicability of our results in the case of a two-dimensional isotropic Gaussian dictionary. We show that, in this particular setup, the proposed approximation framework outperforms standard Taylor approximation.


翻译:在这份通报中,我们讨论了在“连续”字典中鲜少表述时通常遇到的参数字典原子近似化问题。我们侧重于翻译变量词典的情况,原子之间的内产物仅取决于参数之间的差异。我们调查了以下一般性问题:字典中是否有低端近似值在保留原始字典翻译变量性质的同时对原子子集进行内插?我们得出必要和充分的条件,说明这种“内插”和“翻译变量”低端近似值的存在。此外,我们提供了这种词典存在的封闭式表达法。我们举例说明了我们的结果在二维等式高斯字典中的适用性。我们在这个特别的设置中,我们表明拟议的近似框架超越了标准的Taylor近似值。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
已删除
将门创投
4+阅读 · 2018年6月1日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
0+阅读 · 2021年1月20日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
已删除
将门创投
4+阅读 · 2018年6月1日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员