Neural radiance fields enable novel-view synthesis and scene reconstruction with photorealistic quality from a few images, but require known and accurate camera poses. Conventional pose estimation algorithms fail on smooth or self-similar scenes, while methods performing inverse rendering from unposed views require a rough initialization of the camera orientations. The main difficulty of pose estimation lies in real-life objects being almost invariant under certain transformations, making the photometric distance between rendered views non-convex with respect to the camera parameters. Using an equivalence relation that matches the distribution of local minima in camera space, we reduce this space to its quotient set, in which pose estimation becomes a more convex problem. Using a neural-network to regularize pose estimation, we demonstrate that our method - MELON - can reconstruct a neural radiance field from unposed images with state-of-the-art accuracy while requiring ten times fewer views than adversarial approaches.
翻译:神经亮度场面使得能够从一些图像中进行新颖的视觉合成和场景重建,具有摄影现实性质量,但需要有已知和准确的相机配置。 常规在光滑或自我相似的场面上构成估计算法失败, 而从未映射的场面进行反向转换的方法则需要粗略地初始化相机方向。 显示估计的主要困难在于在一定的变形下真实的物体几乎是无变化的, 使得在相机参数方面, 提供的视图之间的光度距离与摄像头参数不相干。 使用与相机空间中本地微型图像分布相匹配的等同关系, 我们将这种空间缩小到其商数组, 从而形成一个更复杂的问题。 我们使用神经网络来规范表面估测图, 我们证明我们的方法— MELON — 能够从具有最新精确度的图像中重建一个神经亮度场, 同时需要比对抗性方法少十倍的视图。</s>