Deep learning is the method of choice for trajectory prediction for autonomous vehicles. Unfortunately, its data-hungry nature implicitly requires the availability of sufficiently rich and high-quality centralized datasets, which easily leads to privacy leakage. Besides, uncertainty-awareness becomes increasingly important for safety-crucial cyber physical systems whose prediction module heavily relies on machine learning tools. In this paper, we relax the data collection requirement and enhance uncertainty-awareness by using Federated Learning on Connected Autonomous Vehicles with an uncertainty-aware global objective. We name our algorithm as FLTP. We further introduce ALFLTP which boosts FLTP via using active learning techniques in adaptatively selecting participating clients. We consider both negative log-likelihood (NLL) and aleatoric uncertainty (AU) as client selection metrics. Experiments on Argoverse dataset show that FLTP significantly outperforms the model trained on local data. In addition, ALFLTP-AU converges faster in training regression loss and performs better in terms of NLL, minADE and MR than FLTP in most rounds, and has more stable round-wise performance than ALFLTP-NLL.
翻译:深度学习是自主车辆轨迹预测的选择方法。 不幸的是,其数据饥饿的性质隐含地要求提供足够丰富和高质量的中央数据集,这很容易导致隐私泄漏。此外,对于安全临界网络物理系统,其预测模块严重依赖机器学习工具,不确定性意识越来越重要。在本文中,我们通过使用具有不确定性的全球目标的连接自主车辆联邦学习系统,放松数据收集要求,提高不确定性意识。我们把我们的算法命名为FLTP。我们进一步引入ALLLTP,它通过在适应性选择参与客户时使用积极的学习技术来提升FLTP。我们认为,对日志的负面相似性(NLL)和偏移性不确定性(AU)都是客户选择指标。Argoversal数据集实验表明,FLTP大大超越了当地数据培训模型。此外,ALLLTP-AU在培训回归损失方面更快地趋于一致,在大多数回合中表现优于FLLT、MADE和MR。</s>