Various analytical techniques-such as scenario modeling, sensitivity analysis, perturbation-based analysis, counterfactual analysis, and parameter space analysis-are used across domains to explore hypothetical scenarios, examine input-output relationships, and identify pathways to desired results. Although termed differently, these methods share common concepts and methods, suggesting unification under what-if analysis. Yet a unified framework to define motivations, core components, and its distinct types is lacking. To address this gap, we reviewed 141 publications from leading visual analytics and HCI venues (2014-2024). Our analysis (1) outlines the motivations for what-if analysis, (2) introduces Praxa, a structured framework that identifies its fundamental components and characterizes its distinct types, and (3) highlights challenges associated with the application and implementation. Together, our findings establish a standardized vocabulary and structural understanding, enabling more consistent use across domains and communicate with greater conceptual clarity. Finally, we identify open research problems and future directions to advance what-if analysis.
翻译:跨领域研究中常采用多种分析技术——如情景建模、敏感性分析、基于扰动的分析、反事实分析与参数空间分析——来探索假设情景、检验输入输出关系并识别达成预期结果的路径。尽管术语表述各异,这些方法共享着共同的概念与方法论,表明其可统一于假设分析框架之下。然而,目前仍缺乏能够明确定义其动机、核心组件及独特类型的统一框架。为填补这一空白,我们系统回顾了2014至2024年间来自可视化分析与人机交互领域顶级会议的141篇文献。我们的分析工作:(1)梳理了假设分析的核心动机;(2)提出了Praxa结构化框架,该框架明确了假设分析的基本构成要素并系统刻画了其独特类型;(3)着重指出了在应用与实施过程中面临的关键挑战。本研究通过建立标准化术语体系与结构性认知框架,有助于推动跨领域研究中对假设分析方法更一致地运用,并提升概念传达的清晰度。最后,我们进一步提出了该领域待解决的研究问题与未来发展方向。