Existing machine learning methods for causal inference usually estimate quantities expressed via the mean of potential outcomes (e.g., average treatment effect). However, such quantities do not capture the full information about the distribution of potential outcomes. In this work, we estimate the density of potential outcomes after interventions from observational data. Specifically, we propose a novel, fully-parametric deep learning method for this purpose, called Interventional Normalizing Flows. Our Interventional Normalizing Flows offer a properly normalized density estimator. For this, we introduce an iterative training of two normalizing flows, namely (i) a teacher flow for estimation of nuisance parameters and (ii) a student flow for parametric estimation of the density of potential outcomes. For efficient and doubly-robust estimation of the student flow parameters, we develop a custom tractable optimization objective based on a one-step bias correction. Across various experiments, we demonstrate that our Interventional Normalizing Flows are expressive and highly effective, and scale well with both sample size and high-dimensional confounding. To the best of our knowledge, our Interventional Normalizing Flows are the first fully-parametric, deep learning method for density estimation of potential outcomes.
翻译:有关因果推断的现有机算学习方法通常通过潜在结果的平均值(如平均处理效应)估计表示的数量。然而,这种数量并不反映潜在结果分布的全部信息。在这项工作中,我们根据观察数据的干预措施估计潜在结果的密度。具体地说,我们为此提出一种新的、完全分辨的深度学习方法,称为干预性正常流动。我们的干预性正常化流动提供了一种正常的密度估计值。在这方面,我们引入了两种正常流动的迭代培训,即(一) 用于估计骚扰参数的教师流动,(二) 用于潜在结果密度的准度估计的学生流动。关于对学生流动参数的高效和双重紫色估计,我们根据单步偏差校正制定了定制的可拉动优化目标。在各种实验中,我们证明我们的干预性正常流动是明确和高度有效的,规模与抽样大小和高维度混为一格。对于我们的知识而言,我们的干预性常态流动是第一个完全分辨的深度研究结果。