Semi-competing risks refers to the survival analysis setting where the occurrence of a non-terminal event is subject to whether a terminal event has occurred, but not vice versa. Semi-competing risks arise in a broad range of clinical contexts, with a novel example being the pregnancy condition preeclampsia, which can only occur before the `terminal' event of giving birth. Models that acknowledge semi-competing risks enable investigation of relationships between covariates and the joint timing of the outcomes, but methods for model selection and prediction of semi-competing risks in high dimensions are lacking. Instead, researchers commonly analyze only a single or composite outcome, losing valuable information and limiting clinical utility -- in the obstetric setting, this means ignoring valuable insight into timing of delivery after preeclampsia has onset. To address this gap we propose a novel penalized estimation framework for frailty-based illness-death multi-state modeling of semi-competing risks. Our approach combines non-convex and structured fusion penalization, inducing global sparsity as well as parsimony across submodels. We perform estimation and model selection via a pathwise routine for non-convex optimization, and prove the first statistical error bound results in this setting. We present a simulation study investigating estimation error and model selection performance, and a comprehensive application of the method to joint risk modeling of preeclampsia and timing of delivery using pregnancy data from an electronic health record.
翻译:半相竞风险是指生存分析设置,非终极事件的发生取决于是否发生了终点事件,而不是相反。半相竞风险出现在广泛的临床环境中,一个新颖的例子是妊娠状况先兆子粒子,这只能在分娩“终点”事件之前发生。承认半相竞风险的模型有助于调查同变异体和结果的共同时间安排之间的关系,但缺乏在高维方面半相竞风险的模式选择和预测方法。相反,研究人员通常只分析单一或综合结果,失去宝贵的信息和限制临床效用 -- -- 在产科环境中,这意味着忽视对分娩时间的宝贵洞察力,在先兆子粒子出现之后,我们为弥补这一差距提议了一个新受罚的估算框架,用于对半相竞风险的组合和结构性合并风险之间的关系进行调查。我们的方法把非convelx和半相竞合风险的混合化方法结合起来,从而导致全球恐慌,并成为各子模型之间的隐隐含点。我们首先在产科环境中对交付时间选择了宝贵的信息并限制临床效用 -- -- 一种我们通过一种常规选择方法来进行估算,然后通过一种选择一种模式,通过一种选择一种选择一种选择方法来进行一种选择。