This paper introduces Hypersequent GV (HGV), a modular and extensible core calculus for functional programming with session types that enjoys deadlock freedom, confluence, and strong normalisation. HGV exploits hyper-environments, which are collections of type environments, to ensure that structural congruence is type preserving. As a consequence we obtain a tight operational correspondence between HGV and HCP, a hypersequent-based process-calculus interpretation of classical linear logic. Our translations from HGV to HCP and vice-versa both preserve and reflect reduction. HGV scales smoothly to support Girard's Mix rule, a crucial ingredient for channel forwarding and exceptions.
翻译:本文介绍高后GV(HGV),这是一个模块和可扩展的核心计算器,用于功能性编程,其周期类型享有僵持的自由、融合和强烈的正常化。HGV利用超环境,这些环境是类型环境的集合,以确保结构一致性的保持。因此,我们获得了HGV和HCP(HCP)之间密切的操作通信,这是对经典线性逻辑的基于超后序的过程计算解释。我们从HGV翻译成HCP, 反之,我们从HCP翻译成HCP, 保存和反映减少。HGV的尺度可以顺利地支持Girard的Mix规则,这是传送频道和例外的关键成分。