The complexity of the promise constraint satisfaction problem $\operatorname{PCSP}(\mathbf{A},\mathbf{B})$ is largely unknown, even for symmetric $\mathbf{A}$ and $\mathbf{B}$, except for the case when $\mathbf{A}$ and $\mathbf{B}$ are Boolean. First, we establish a dichotomy for $\operatorname{PCSP}(\mathbf{A},\mathbf{B})$ where $\mathbf{A}, \mathbf{B}$ are symmetric, $\mathbf{B}$ is functional (i.e. any $r-1$ elements of an $r$-ary tuple uniquely determines the last one), and $(\mathbf{A},\mathbf{B})$ satisfies technical conditions we introduce called dependency and additivity. This result implies a dichotomy for $\operatorname{PCSP}(\mathbf{A},\mathbf{B})$ with $\mathbf{A},\mathbf{B}$ symmetric and $\mathbf{B}$ functional if (i) $\mathbf{A}$ is Boolean, or (ii) $\mathbf{A}$ is a hypergraph of a small uniformity, or (iii) $\mathbf{A}$ has a relation $R^{\mathbf{A}}$ of arity at least 3 such that the hypergraph diameter of $(A, R^{\mathbf{A}})$ is at most 1. Second, we show that for $\operatorname{PCSP}(\mathbf{A},\mathbf{B})$, where $\mathbf{A}$ and $\mathbf{B}$ contain a single relation, $\mathbf{A}$ satisfies a technical condition called balancedness, and $\mathbf{B}$ is arbitrary, the combined basic linear programming relaxation (BLP) and the affine integer programming relaxation (AIP) is no more powerful than the (in general strictly weaker) AIP relaxation. Balanced $\mathbf{A}$ include symmetric $\mathbf{A}$ or, more generally, $\mathbf{A}$ preserved by a transitive permutation group.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
22+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
专知会员服务
33+阅读 · 2021年3月7日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
学习自然语言处理路线图
专知会员服务
139+阅读 · 2019年9月24日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年6月27日
Arxiv
16+阅读 · 2022年5月17日
VIP会员
相关VIP内容
专知会员服务
22+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
专知会员服务
33+阅读 · 2021年3月7日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
学习自然语言处理路线图
专知会员服务
139+阅读 · 2019年9月24日
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员