We develop fractional buffer layers (FBLs) to absorb propagating waves without reflection in bounded domains. Our formulation is based on variable-order spatial fractional derivatives. We select a proper variable-order function so that dissipation is induced to absorb the coming waves in the buffer layers attached to the domain. In particular, we first design proper FBsL for the one-dimensional one-way and two-way wave propagation. Then, we extend our formulation to two-dimensional problems, where we introduce a consistent variable-order fractional wave equation. In each case, we obtain the fully discretized equations by employing a spectral collocation method in space and Crank-Nicolson or Adams-Bashforth method in time. We compare our results with the perfectly matched layer (PML) method and show the effectiveness of FBL in accurately suppressing any erroneously reflected waves, including corner reflections in two-dimensional rectangular domains. FBLs can be used in conjunction with any discretization method appropriate for fractional operators describing wave propagation in bounded or truncated domains.
翻译:我们开发了分数缓冲层( FBLs) 以吸收传播波, 而不在封闭域内反射。 我们的配方以可变顺序空间分解衍生物为基础。 我们选择了适当的变量顺序功能, 以便吸收连接域的缓冲层中即将到来的波。 特别是, 我们首先为单维单向和双向波传播设计适当的 FBSL 。 然后, 我们将配方扩大到二维问题, 在那里我们引入一个一致的变量- 顺序分解波等方程式。 在每种情况下, 我们通过在空间和 Clank- Nicolson 或 Adams- Bashforth 中使用光谱共位法获得完全分离的方程式。 我们用完全匹配的层( PML) 方法来比较我们的结果, 并展示 FBL 在准确抑制任何错误反射波方面的有效性, 包括两维矩形域的角反射镜。 FBLs 可以用任何适合分立法的方法来帮助分解分位操作者描述在条或三角区域内的波传播。