This work presents a data-driven reduced-order modeling framework to accelerate the computations of $N$-body dynamical systems and their pair-wise interactions. The proposed framework differs from traditional acceleration methods, like the Barnes-Hut method, which requires online tree building of the state space, or the fast-multipole method, which requires rigorous $a$ $priori$ analysis of governing kernels and online tree building. Our approach combines Barnes-Hut hierarchical decomposition, dimensional compression via the least-squares Petrov-Galerkin (LSPG) projection, and hyper-reduction by way of the Gauss-Newton with approximated tensor (GNAT) approach. The resulting $projection-tree$ reduced order model (PTROM) enables a drastic reduction in operational count complexity by constructing sparse hyper-reduced pairwise interactions of the $N$-body dynamical system. As a result, the presented framework is capable of achieving an operational count complexity that is independent of $N$, the number of bodies in the numerical domain. Capabilities of the PTROM method are demonstrated on the two-dimensional fluid-dynamic Biot-Savart kernel within a parametric and reproductive setting. Results show the PTROM is capable of achieving over 2000$\times$ wall-time speed-up with respect to the full-order model, where the speed-up increases with $N$. The resulting solution delivers quantities of interest with errors that are less than 0.1$\%$ with respect to full-order model.
翻译:这项工作提出了一个数据驱动减序模型框架,以加速计算$N-身体动态系统及其双向互动。拟议框架不同于传统的加速方法,如Barnes-Hut方法,该方法要求国家空间的在线树建设,或快速多极方法,该方法要求对治理内核和在线树建设进行严格的高额美元分析。我们的方法将Barnes-Hut等级分解、通过最低方的Petrov-Galerkin(LSPG)投影和通过高斯-Newton(约合高体-高体-高斯-高斯-新斯顿)的超速压缩结合起来。由此产生的美元-双向减序模型(PTROM)通过建立稀薄的超高度双向互动,使操作复杂性大幅降低。因此,所提出的框架能够实现操作复杂性,而以美元-Petrov-Galkin (LSPG) 投送全域的机构数目为独立。PT-PT-ROM方法的全速性能度,在2000年全线-高端标准中,将可交付的利率-智能-直流路路路路路,在2度上显示成本的Risma-sal-s-roma-sxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx。