Graphical data arises naturally in several modern applications, including but not limited to internet graphs, social networks, genomics and proteomics. The typically large size of graphical data argues for the importance of designing universal compression methods for such data. In most applications, the graphical data is sparse, meaning that the number of edges in the graph scales more slowly than $n^2$, where $n$ denotes the number of vertices. Although in some applications the number of edges scales linearly with $n$, in others the number of edges is much smaller than $n^2$ but appears to scale superlinearly with $n$. We call the former sparse graphs and the latter heavy-tailed sparse graphs. In this paper we introduce a universal lossless compression method which is simultaneously applicable to both classes. We do this by employing the local weak convergence framework for sparse graphs and the sparse graphon framework for heavy-tailed sparse graphs.
翻译:图形数据自然出现在几个现代应用中,包括但不限于互联网图形、社交网络、基因组学和蛋白质组学。 典型的图形数据大得惊人, 表明设计通用压缩方法对这些数据的重要性。 在大多数应用中, 图形数据稀少, 意味着图形比例的边缘数比 $n $2 低得多, 也就是说, $0 表示的脊椎数。 尽管在某些应用中, 边缘数以美元线性标定, 以美元线性标定, 而在另一些应用中, 边缘数大大小于 $%2 美元, 但似乎以 美元 超线性标定。 我们调用以前的稀薄图形和后一个重尾细的稀薄图表。 在本文中, 我们引入了一种通用的无损压缩方法, 这种方法同时适用于两个类别 。 我们这样做的方法是使用本地的稀薄图形聚合框架和重尾细小的稀细图表的图形框架 。