A hallmark of intelligence is the ability to autonomously learn new flexible, cognitive behaviors - that is, behaviors where the appropriate action depends not just on immediate stimuli (as in simple reflexive stimulus-response associations), but on memorized contextual information. Such cognitive, memory-dependent behaviors are by definition meta-learning tasks. In typical meta-learning experiments, agents are trained with an external, human-designed algorithm to learn a given cognitive task. By contrast, animals are able to pick up new cognitive tasks automatically, from stimuli and rewards alone: evolution has designed animal brains as self-contained reinforcement (meta-)learning systems, capable not just of performing specific cognitive tasks, but of acquiring novel cognitive tasks, including tasks never seen during evolution. Can we harness this process to generate artificial agents with such abilities? Here we evolve neural networks, endowed with plastic connections and neuromodulation, over a sizable set of simple meta-learning tasks based on a framework from computational neuroscience. The resulting evolved networks can automatically modify their own connectivity to acquire a novel simple cognitive task, never seen during evolution, through the spontaneous operation of their evolved neural organization and plasticity system. We suggest that attending to the multiplicity of loops involved in natural learning may provide useful insight into the emergence of intelligent behavior.
翻译:情报的一个特征是能够自主地学习新的灵活认知行为,也就是说,在行为上,适当的行动不仅取决于即时刺激(如简单的反反射刺激反应协会),而且取决于记忆背景信息。这种认知、记忆依赖行为是定义的元学习任务。在典型的元学习实验中,代理人员经过外部的、人为设计的算法培训,学习特定的认知任务。相反,动物能够从单从刺激和奖励中自动接受新的认知任务:进化过程将动物大脑设计为自成一体的强化(元)学习系统,不仅能够执行特定的认知任务,而且能够获得新的认知任务,包括进化过程中从未看到的任务。我们能否利用这一过程来产生具有这种能力的人工剂?在这里,我们进化了神经网络,具有与塑料连接和神经调节的特质,超越了基于计算神经科学框架的一套可扩展的简单元学习任务。由此形成的进化网络可以自动改变自己的连通性,以获得一个全新的简单认知任务,在进化过程中从未看到,通过进化的进化操作,通过进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的系统,可以提供的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的系统中,