The local Rademacher complexity framework is one of the most successful general-purpose toolboxes for establishing sharp excess risk bounds for statistical estimators based on the framework of empirical risk minimization. Applying this toolbox typically requires using the Bernstein condition, which often restricts applicability to convex and proper settings. Recent years have witnessed several examples of problems where optimal statistical performance is only achievable via non-convex and improper estimators originating from aggregation theory, including the fundamental problem of model selection. These examples are currently outside of the reach of the classical localization theory. In this work, we build upon the recent approach to localization via offset Rademacher complexities, for which a general high-probability theory has yet to be established. Our main result is an exponential-tail excess risk bound expressed in terms of the offset Rademacher complexity that yields results at least as sharp as those obtainable via the classical theory. However, our bound applies under an estimator-dependent geometric condition (the "offset condition") instead of the estimator-independent (but, in general, distribution-dependent) Bernstein condition on which the classical theory relies. Our results apply to improper prediction regimes not directly covered by the classical theory.
翻译:本地Rademacher 复杂框架是建立基于实证风险最小化框架的统计估计员高超风险界限的最成功的通用工具箱之一。 应用这个工具箱通常需要使用伯恩斯坦条件, 通常限制对曲线和适当环境的适用性。 近年来, 出现了若干问题的例子, 最佳统计性能只能通过非混凝土和来自聚合理论的不适当估计器实现, 包括模型选择的根本问题。 这些例子目前不在经典本地化理论的范围之内。 在这项工作中, 我们利用最近通过抵消拉德马赫复杂因素实现本地化的方法, 尚未确立普遍高概率理论。 我们的主要结果是, 以抵消拉德赫复杂因素的形式呈现出指数- 超大风险, 产生的结果至少与通过古典理论获得的结果一样清晰。 但是, 我们的界限在依赖估算师的测地条件( “ 异常条件 ” ) 下适用, 而不是依赖估量师( 但一般的、 依赖分配的) 伯恩斯坦理论的复杂因素。 我们的模型所覆盖的模型的模型将结果直接应用于模型。