This paper studies posterior contraction rates in multi-category logit models with priors incorporating group sparse structures. We consider a general class of logit models that includes the well-known multinomial logit models as a special case. Group sparsity is useful when predictor variables are naturally clustered and particularly useful for variable selection in the multinomial logit models. We provide a unified platform for posterior contraction rates of group-sparse logit models that include binary logistic regression under individual sparsity. No size restriction is directly imposed on the true signal in this study. In addition to establishing the first-ever contraction properties for multi-category logit models under group sparsity, this work also refines recent findings on the Bayesian theory of binary logistic regression.
翻译:本文研究多类逻辑模型的后端收缩率,这些模型的前端包括群体稀疏结构。我们认为,一般的逻辑模型类别包括众所周知的多数值逻辑模型,这是一个特殊案例。当预测变量自然地被组合在一起时,群体宽度非常有用,对于多数值逻辑模型的变量选择特别有用。我们为群体稀释逻辑模型的后端收缩率提供了一个统一平台,其中包括个体散射下二元物流回归。本研究报告对真实信号没有直接的尺寸限制。除了在群体宽度下为多类逻辑模型建立有史以来的第一次收缩性外,这项工作还完善了巴伊西亚二元物流回归理论的最新研究结果。