In this work, we design and analyze a Hybrid High-Order (HHO) discretization method for incompressible flows of non-Newtonian fluids with power-like convective behaviour. We work under general assumptions on the viscosity and convection laws, that are associated with possibly different Sobolev exponents r > 1 and s > 1. After providing a novel weak formulation of the continuous problem, we study its well-posedness highlighting how a subtle interplay between the exponents r and s determines the existence and uniqueness of a solution. We next design an HHO scheme based on this weak formulation and perform a comprehensive stability and convergence analysis, including convergence for general data and error estimates for shear-thinning fluids and small data. The HHO scheme is validated on a complete panel of model problems.
翻译:在这项工作中,我们设计并分析一种混合高级命令(HHO)离散法,用于处理非纽顿流体中具有类似动力的对流行为,我们根据关于粘度和对流法的一般假设开展工作,这些法律可能与不同的Sobolevexponents r > 1 和 s > 1 有关,在对持续的问题提出新的弱化表述后,我们研究了它的良好预测性,强调出品与出品之间微妙的相互作用如何决定解决办法的存在和独特性。我们接下来设计一个基于这种微弱的配方的HHO方案,并进行全面的稳定性和趋同性分析,包括对剪动流体和小数据的一般数据和误差估计的趋同性。HHHO方案在一个完整的模型小组中得到验证。