The main goal in task planning is to build a sequence of actions that takes an agent from an initial state to a goal state. In robotics, this is particularly difficult because actions usually have several possible results, and sensors are prone to produce measurements with error. Partially observable Markov decision processes (POMDPs) are commonly employed, thanks to their capacity to model the uncertainty of actions that modify and monitor the state of a system. However, since solving a POMDP is computationally expensive, their usage becomes prohibitive for most robotic applications. In this paper, we propose a task planning architecture for service robotics. In the context of service robot design, we present a scheme to encode knowledge about the robot and its environment, that promotes the modularity and reuse of information. Also, we introduce a new recursive definition of a POMDP that enables our architecture to autonomously build a hierarchy of POMDPs, so that it can be used to generate and execute plans that solve the task at hand. Experimental results show that, in comparison to baseline methods, by following a recursive hierarchical approach the architecture is able to significantly reduce the planning time, while maintaining (or even improving) the robustness under several scenarios that vary in uncertainty and size.


翻译:任务规划的主要目标是建立一系列行动,从初始状态到目标状态的代理商。 在机器人中,这特别困难,因为行动通常有几种可能的结果,传感器容易产生有误的测量结果。部分可见的Markov 决策程序(POMDPs)被普遍采用,因为它们有能力模拟改变和监测系统状态的行动的不确定性。然而,由于解决一个POMDP是计算成本高昂的,因此大多数机器人应用程序都无法使用。在本文中,我们提议了一个服务机器人的任务规划结构。在服务机器人设计方面,我们提出了一个计划,将有关机器人及其环境的知识编码,促进信息的模块化和再利用。此外,我们引入了一个新的POMDP的循环定义,使我们的架构能够自主地建立POMDP的等级结构,从而可以用来生成和执行解决手头任务的计划。实验结果表明,与基线方法相比,该架构可以大幅缩短规划时间,同时在几种情景下保持(或甚至改进)稳健的不确定性。

0
下载
关闭预览

相关内容

【CHI2021】可解释人工智能导论
专知会员服务
120+阅读 · 2021年5月25日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
【Manning新书】现代Java实战,592页pdf
专知会员服务
100+阅读 · 2020年5月22日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
4+阅读 · 2021年4月13日
Arxiv
9+阅读 · 2019年4月19日
VIP会员
相关VIP内容
【CHI2021】可解释人工智能导论
专知会员服务
120+阅读 · 2021年5月25日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
【Manning新书】现代Java实战,592页pdf
专知会员服务
100+阅读 · 2020年5月22日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员