Syntax is fundamental to our thinking about language. Failing to capture the structure of input language could lead to generalization problems and over-parametrization. In the present work, we propose a new syntax-aware language model: Syntactic Ordered Memory (SOM). The model explicitly models the structure with an incremental parser and maintains the conditional probability setting of a standard language model (left-to-right). To train the incremental parser and avoid exposure bias, we also propose a novel dynamic oracle, so that SOM is more robust to wrong parsing decisions. Experiments show that SOM can achieve strong results in language modeling, incremental parsing and syntactic generalization tests, while using fewer parameters than other models.


翻译:语法是我们思考语言的基础。 不捕捉输入语言的结构可能导致一般化问题和过度平衡化。 在目前的工作中, 我们提议一个新的通识语法语言模式: 同步有秩序内存( SOM ) 。 模型明确用递增分析器来模拟结构, 并维持标准语言模式( 左对右) 的有条件概率设置 。 为了培训递增的读取器并避免暴露偏差, 我们还提议了一个新颖的动态符咒, 以便 SOM 能够更有力地做出错误的解析决定 。 实验显示 SOM 在语言建模、 递增分解和综合化测试方面可以取得显著效果, 同时使用比其他模式更少的参数 。

0
下载
关闭预览

相关内容

商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
学习自然语言处理路线图
专知会员服务
137+阅读 · 2019年9月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
别说还不懂依存句法分析
人工智能头条
23+阅读 · 2019年4月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年7月1日
Sparse Sequence-to-Sequence Models
Arxiv
5+阅读 · 2019年5月14日
Incremental Reading for Question Answering
Arxiv
5+阅读 · 2019年1月15日
Arxiv
6+阅读 · 2018年11月1日
Arxiv
5+阅读 · 2017年9月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
别说还不懂依存句法分析
人工智能头条
23+阅读 · 2019年4月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员