\underline{AI} \underline{G}enerated \underline{C}ontent (\textbf{AIGC}) has gained widespread attention with the increasing efficiency of deep learning in content creation. AIGC, created with the assistance of artificial intelligence technology, includes various forms of content, among which the AI-generated images (AGIs) have brought significant impact to society and have been applied to various fields such as entertainment, education, social media, etc. However, due to hardware limitations and technical proficiency, the quality of AIGC images (AGIs) varies, necessitating refinement and filtering before practical use. Consequently, there is an urgent need for developing objective models to assess the quality of AGIs. Unfortunately, no research has been carried out to investigate the perceptual quality assessment for AGIs specifically. Therefore, in this paper, we first discuss the major evaluation aspects such as technical issues, AI artifacts, unnaturalness, discrepancy, and aesthetics for AGI quality assessment. Then we present the first perceptual AGI quality assessment database, AGIQA-1K, which consists of 1,080 AGIs generated from diffusion models. A well-organized subjective experiment is followed to collect the quality labels of the AGIs. Finally, we conduct a benchmark experiment to evaluate the performance of current image quality assessment (IQA) models.
翻译:AI 生成的内容(AIGC)由于深度学习在内容创作中的效率日益提高而受到广泛关注。 AIGC 是在人工智能技术的帮助下创建的各种内容之一,其中 AI 生成的图像(AGI)对社会产生了重要影响,并已应用于娱乐、教育、社交媒体等各个领域。 然而,由于硬件限制和技术精通度的不同,AIGC 图像(AGI)的质量变化很大,需要在实际使用之前进行精细化和过滤。 因此,迫切需要开发客观的模型来评估 AGI 的质量。 不幸的是,尚未进行任何研究以专门探讨 AGI 感知质量评估。 因此,在本文中,我们首先讨论 AGI 质量评估的主要评估方面,例如技术问题、AI 痕迹、不自然性、差异和美学。 然后,我们提供第一个感知 AGI 质量评估数据库 AGIQA-1K,其中包括 1,080 个从扩散模型生成的 AGI。 随后进行了一项良好组织的主观实验,以收集 AGI 的质量标签。 最后,我们进行基准实验,评估当前图像质量评估 (IQA) 模型的性能。