Browser fingerprinting is a stateless identification technique based on browser properties. Together, they form an identifier that can be collected without users' notice and has been studied to be unique and stable. As this technique relies on browser properties that serve legitimate purposes, the detection of this technique is challenging. While several studies propose classification techniques, none of these are publicly available, making them difficult to reproduce. This paper proposes a new browser fingerprinting detection technique. Based on an incremental process, it relies on both automatic and manual decisions to be both reliable and fast. The automatic step matches API calls similarities between scripts while the manual step is required to classify a script with different calls. We publicly share our algorithm and implementation to improve the general knowledge on the subject.
翻译:浏览器指纹是一种基于浏览器属性的无国籍识别技术。 它们共同形成一个识别符号, 无需用户通知即可收集, 并且经过研究是独特的和稳定的。 由于该技术依赖于服务于合法目的的浏览器属性, 检测这一技术具有挑战性。 虽然有几项研究提出了分类技术, 但其中没有任何一项是公开的, 因而难以复制。 本文提出了一个新的浏览器指纹检测技术。 基于一个渐进的过程, 它依靠自动和手工决定既可靠又快速。 自动步骤匹配 API 调用脚本之间的相似之处, 而手动步骤则要求用不同电话对脚本进行分类。 我们公开分享我们的算法和实施方法, 以提高关于这个主题的一般知识 。