In a power system, unlike some critical and standalone assets that are equipped with condition monitoring devices, the conditions of most regular in-group assets are acquired through periodic inspection work. Due to their large quantities, significant amount of manual inspection effort and sometimes data management issues, it is not uncommon to see the asset condition data in a target study area is unavailable or incomplete. Lack of asset condition data undermines the reliability assessment work. To solve this data problem and enhance data availability, this paper explores an unconventional method-generating numerical and non-numerical asset condition data based on condition degradation, condition correlation and categorical distribution models. Empirical knowledge from human experts can also be incorporated in the modeling process. Also, a probabilistic diversification step can be taken to make the generated numerical condition data probabilistic. This method can generate close-to-real asset condition data and has been validated systematically based on two public datasets. An area reliability assessment example based on cables is given to demonstrate the usefulness of this method and its generated data. This method can also be used to conveniently generate hypothetical asset condition data for research purposes.
翻译:在电力系统中,与配备条件监测装置的一些关键和独立的资产不同,大多数正常的集团内资产的状况是通过定期检查工作获得的,由于数量巨大、大量的人工检查工作,有时还有数据管理问题,在目标研究区看到资产状况数据缺乏或不完整的情况并不少见,缺乏资产状况数据破坏了可靠性评估工作。为了解决这一数据问题并加强数据的提供,本文件探讨了一种非常规方法生成的数字资产状况数据和非数字资产状况数据,其依据是条件退化、状况相关性和绝对分布模型。人类专家的经验知识也可以纳入模型制作过程。此外,还可以采取概率多样化步骤,使生成的数字状况数据具有概率性。这种方法可以产生接近实际资产状况数据,并根据两个公共数据集系统验证。一个以电缆为基础的区域可靠性评估实例可以证明这种方法及其生成的数据的有用性。这一方法也可以用来方便地生成用于研究目的的假设资产状况数据。